
t 

I Cancellation of laser noise in an unequal-arm 

interferometer detector  of gravitational radiation 

Massimo Tinto' and J.W. Armstrongt 

Jet Propulsion  Laboratory,  California  Institute of Technology 

Pasadena,  California 91 109 

(October 12, 1998) 

Abstract 

Equal-arm  interferometric  detectors of gravitational  radiation allow phase 

measurements  many  orders of magnitude below the  intrinsic  phase  stability 

of the laser  injecting  light into  their  arms. This is  because the noise in the 

laser  light is common to both  arms, experiencing  exactly the  same delay, and 

thus cancels when it is differenced at the  photo  detector.  In  this  situation, 

much lower  level secondary noises then  set overall performance. If, however, 

the two  arms have different lengths (a s  will necessarily be the case  with space- 

borne  interferometers), the laser noise experiences different delays in the  two 

arms  and will hence not  directly cancel at the detector. 

In this paper we present a method  for  exactly cancelling the laser noise 

in a one-bounce  unequal-arm Michelson interferometer. The  method requires 

separate  measurements of the phase difference in each arm,  made by interfer- 

ing the  returning laser light in each arm with the  outgoing light.  Let  these 

two  time series of phase difference be z; , i = 1,2. By forming the  quantity 

[ z l ( t  - 2L2/c) - z l ( t ) ]  - [z2( t  - 2 L l / c )  - z2(t)] ,  where L; are  the  arm  lengths, 
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gravitational wave signals  remain while the laser noise is cancelled. Unlike 

other proposed  methods, this procedure  accurately  cancels the laser noise if 

the  arm  lengths  are known. This method is direct in time  and allows for 

time-varying  arm-lengths. In this  paper we demonstrate  that  this  method 

precisely cancels the laser noise, present the  transfer  function of gravitational 

waves after forming this linear  combination,  and  discuss  system  requirements 

(such as required knowledge of the  arm  lengths). We verify the technique 

with  numerical  simulation of periodic gravitational wave signals  embedded  in 

laser and  shot noise having spectra expected  for a space-borne  interferometer, 

and  compare our time-domain approach  with  approximate  correction  methods 

based on  Fourier  transforms of the z; processes. 
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. 
I.   INTRODUCTION 

Interferometric, non-resonant, detectors of gravitational  radiation  (with frequency con- 

tent 0 < f < f ~ )  use a coherent train of electromagnetic waves  (of nominal frequency 

uo >> f ~ )  folded into several beams,  and at one or more  points where these  intersect, mon- 

itor  relative  fluctuations of frequency or phase (homodyne  detection). The observed low 

frequency signals are due to frequency variations of the source of the electromagnetic signal 

about uo, to relative motions of the source and  the mirrors (or amplifying transponders) 

that do the folding, to temporal variations of the index of refraction along the beams, and, 

according to general relativity, to any time-variable gravitational fields present, such as the 

transverse traceless metric  curvature of a passing plane  gravitational wave train. To observe 

gravitational waves in this way, it is thus necessary to control, or monitor,  the other sources 

of relative frequency fluctuations, and, in the  data analysis, to use optimal  algorithms based 

on the different characteristic interferometer responses to gravitation.al waves (the signal) 

and to  the  other sources (the noise) [l]. By comparing phases of split  beams  propagated 

along non-parallel equal-length arms, frequency fluctuations of the frequency reference can 

be removed and  gravitational wave signals at levels many orders of magnitude lower can be 

detected. Especially for space-based interferometers, that  may use lasers with  a frequency 

stability  at best of a few parts in it is essential to  be able to remove these fluctuations 

when searching for gravitational waves  of dimensionless amplitudes less than loe2' in the 

millihertz band [3]. 

In present single-spacecraft Doppler tracking observations many of the noise sources can 

be  either reduced or calibrated by implementing appropriate microwave frequency links and 

by using specialized electronics, so the fundamental  limitation is imposed by the frequency 

(time-keeping) fluctuations inherent to  the reference clock that controls the microwave  sys- 

tem. Hydrogen maser clocks, currently used  in Doppler tracking experiments, achieve their 

best performance at about 1000 seconds integration  time, with a  fractional frequency sta- 

bility of a few parts in This is the reason  why these one-arm interferometers in space 
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(which have one detector  and a "3-pulse" response to gravitational waves [2]) are most 

sensitive to millihertz  gravitational waves. This  integration  time is also  comparable to  the 

microwave propagation (or "storage") time 2 L / c  to spacecraft  en  route  to  the  outer solar 

system (for example L 2 5 - 8 AU for the Cassini spacecraft). 

Next-generation low-frequency gravitational wave detectors, Michelson optical  interfer- 

ometers  in  Earth or solar orbits [3], have been proposed to achieve greater  sensitivity  to 

millihertz  gravitational waves. Since the armlengths of these space-based interferometers 

can be different by  several  percent, the direct  recombination of the two  beams  at a photo 

detector will not however effectively remove the laser noise. This is because the frequency 

fluctuations of the h e r  will be delayed by a different amount of time inside the two different- 

length  arms.  In  order to solve this problem, a technique involving heterodyne interferometry 

with  unequal arm lengths  and  independent phase-difference readouts  in  each arm was pro- 

posed (41, which yielded data from which source frequency  fluctuations were removed by 

several orders of magnitude.  The technique discussed in [4] relied on the observation that 

the laser frequency  fluctuations  enter  in  the Fourier transforms of the Doppler time series, 

taken over an infinitely long integration  time,  with well defined transfer  functions. It was 

argued  therefore that knowledge of these  transfer  functions would allow one  to remove the 

frequency fluctuations of the laser by linearly combining suitably  normalized Fourier trans- 

forms of the two Doppler time series. If the Fourier transform is performed, however, over 

a finite time  interval,  the  analytic forms of the transfer  functions of the laser  fluctuations 

into  the Fourier transforms of the Doppler responses are different from their idealized ex- 

pressions valid  for infinitely long integration  time. Since the  algorithm  introduced in [4] can 

only be  implemented for finite-length Fourier transforms of the Doppler data, only partial 

cancellation of the laser  fluctuations  can  be achieved in a  real  experiment. The cancellation 

of the laser noise of course improves by increasing the  integration  time,  and  indeed becomes 

exact as the  integration  time goes to infinity. A detailed  analysis of this issue is discussed 

in the Appendix. 

# 

In this  paper we will show that it is possible to remove completely the frequency fluc- 
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tuations of the laser by taking  a  suitable linear combination of the two Doppler time series 

after having time shifted  them properly. This  direct  method achieves the exact cancellation 

of the laser frequency fluctuations,  and does not require any Fourier transform of the  data. 

An outline of the  paper is presented below. 

In Sec. I1 we state  the problem, and derive the two Doppler responses of the two unequal 

arms. This implies that  the frequency fluctuations of the laser can not be removed by direct 

differencing of the two data sets. In Sec. I11 we present our technique for synthesizing an 

unequal-arm interferometer.  Our  method is implemented in the  time  domain,  and relies on 

a properly chosen linear combination of the two Doppler data. Since our  technique requires 

knowledge of the distances between the proof masses, estimates of the arm-length accuracies 

required to cancel the laser noise to a level  below secondary noises are  then derived. A 

comparison with the method  introduced  in reference [4] is discussed in  the Appendix. Our 

comments and conclusions are finally outlined  in Sec. IV. 

11. STATEMENT OF THE PROBLEM 

Let  us consider three spacecraft flying in an equilateral triangle-like formation, each 

acting as a free falling test  particle,  and continuously tracking each other  via coherent laser 

light. One  spacecraft, which  we  will refer to as spacecraft a,  transmits a laser beam of 

nominal frequency uo to  the other spacecraft (spacecraft b and c at distances L1 and Lz,  

respectively). The phase of the light received at spacecraft b and c is used by lasers on board 

spacecraft b and c for coherent transmission back to spacecraft a.  The  relative two two-way 

frequency (or phase) changes as functions of time  are  then  independently  measured  at two 

photo  detectors on board spacecraft a (Figure 1). When  a  gravitational wave  crossing the 

solar system  propagates  through  these electromagnetic links, it causes small  perturbations 

in frequency (or phase), which are replicated three times in each arm’s data [2]. 

To determine  the response of an unequal arm interferometer to a  gravitational wave pulse, 

let us introduce  a  set of Cartesian orthogonal coordinates ( X ,  Y, 2) centered on spacecraft a 
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- 
(see Figure 2). The X axis is assumed to be  oriented along the bisector of the angle enclosed 

between the two arms, Y is orthogonal to  it in the  plane containing the  three  spacecraft,  and 

the 2 axis is chosen in such a way to form  with ( X ,  Y )  a right-handed,  orthogonal  triad of 

axes. In this  coordinate  system we can  write  the two two-way Doppler  responses,  measured 

by spacecraft a at time t ,  as follows [5,6] (units in which the speed of 1ight.c = 1). 

(T)2 A 4 t )  f Y2(t)  = [- (1 - 2 i .  6 )  Q2(t) - i '  & *2(t - (1 + i - &)L2(t)) 

+ 2  ( l +  i *  %(t - 2L2(t)) + C(t - 2 L 4 t ) )  - C ( t )  + n2(t) , (2.2) 1 
where is the  unit vector  in the direction of propagation of the planar  gravitational wave 

pulse. In  Equations (2.1,  2.2) we have denoted by p i ,  pi ,  the  unit vectors from spacecraft a 

to spacecraft b and c respectively; Q(1,2)(t) are  the following two scalar  functions 

with h;j(t) being the rank-2 tensor  associated  with the  gravitational wave pulse in the 

( X ,  Y, 2) coordinate  system [7], and the  sum over the repeated space-like indices has been 

assumed. We have  denoted by C ( t )  the random process associated  with the frequency 

fluctuations of the master laser on board  spacecraft a ,  and nl( t ) ,  n2(t) are  the remaining 

noise sources affecting the Doppler responses yl(t) ,  y2(t) respectively. 

From equations (2.1, 2.2) it is important  to  note  the  characteristic  time  signature of 

the random process C ( t )  in the Doppler responses y1, y2. The.  time  signature of the noise 

C ( t )  in yl( t )  for instance, can be  understood by observing that  the frequency of the signal 

received at  time t contains laser frequency fluctuations transmitted 2L1 seconds earlier. By 

subtracting from the frequency of the received signal the frequency of the signal transmitted 
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at  time t ,  we also subtract  the frequency fluctuations C ( t )  with the  net  result shown in 

equation (2.1). 

Among all the noise sources included in equation (2.1), the frequency fluctuations  due 

to  the laser are expected to  be by far the largest. A space-qualified single-mode laser, such 

as a diode-pumped Nd:YAG ring laser of frequency vo = 3.0 x 1014 Hz and phase-locked to 

a Fabry-Perot optical cavity, is expected to have a  spectral level of frequency fluctuations 

equal to  about 1.0 x 1 0 - 1 3 / G  in the millihertz band 1131. A single point frequency stability 

measurement performed on such a laser by McNamara et al. [8] indicates that a  stability 

of about 1 .O x 10"14/m might be achievable in  the same frequency band.  In  this  paper 

however we will assume the laser frequency stability mentioned in [3]. Laser noise is to be 

compared with, e.g., the expected secondary noises  which  will be lo7 or more  times smaller. 

If the  armlengths  are unequal by an amount AL = L2 - L1 G 051 (with e N 3 X 

for a space based interferometer [3]), the simple  subtraction of the two Doppler data yl(t) ,  

y2(t) gives a new data set that is still affected  by the laser fluctuations by an amount equal 

to 

As a numerical example of equation (2.4) we find that;  at a frequency of Hz and by 

using a laser of frequency stability equal to  about l O - l 3 / G ,  the residual laser frequency 

fluctuations are  equal to  about 1 0 - l 6 / G .  Since the goal of proposed space-based interfer- 

ometers [3] is to observe gravitational  radiation at levels of 1 0 - 2 0 / m  or lower, it is crucial 

for the success of these missions to cancel laser frequency fluctuations by many more orders 

of magnitude. 

111. ALGORITHM  FOR  UNEQUAL-ARM  INTERFEROMETERS 

In what follows we will show that  there  exists an algorithm in the  time domain for 

removing the frequency fluctuations of the laser from the two Doppler data yl(t) ,  y2(t) at 
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any time t .  This approach does not require Fourier transforms  on the Doppler data. As it 

will be shown below, this method relies only on a properly chosen linear  combination of the 

two Doppler data in the  time  domain. In order to derive  this  technique, we will assume, for 

the  moment,  the two  armlengths L1, L2 to  be  constant  and known exactly. We  will remove 

these  assumptions  later,  and  estimate the corresponding  accuracy  needed in  order for our 

technique to  be  still effective. 

From equations (2.1,  2.2) we may notice that, by taking the difference of the two Doppler 

data yl(t),  yz(t), the frequency fluctuations of the laser now enter  into  this new data set  in 

the following way 

where for simplicity of notation we have defined hl ( t )  and h,(t) to be  the following functions 

1 2  
( 1 - I C * $ )  

h,(t) = - *,(t)  - i * pi *1(t - (1 + i * p7)Ll) 
L 

+ 2  
(1 + h i )  

L 

(1  +IC*&) 
$ 2  * 2 ( t  - 2L2)] * 

If  we  now compare how the laser frequency fluctuations enter  into  equation (3.1) against 

how they  appear  into  equations (2.1,  2.2), we can further make the following observation. If 

we time-shift the  data yl(t) by the round trip light time in arm 2,  yl(t - 2L2), and  subtract 

from it the  data y2(t) after  it  has been time shifted by the  round  trip light time in arm 1, 

y2(t - 2L1), we obtain  the following data set 

A2(t )  = y1(t - 2L2) - y2(t - 2L1) = h,(t - 2L2) - h2(t - 2L1) + C(t  - 2L1) 

- C(t  - 2L2) + n1(t - 2452) - n2(t - 2L1) . '(3.4) 
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In other words, the laser frequency fluctuations  enter  into Al(t), and A2(t) with the same 

time-structure. This implies that, by subtracting  equation (3.1) from equation (3.4), we can 

generate a new data set that does not contain the laser frequency fluctuations C( t )  

E(t) G A2(t) - A,(t) = hl(t - 2L2) - h,(t) - h2(t - 2L1) + h2(t) 

+ n1(t - 2L2) - n1(t) - n2(t - 2L1) + n2(t) - (3.5) 

From the expression of A2(t) given in equation (3.4), it is easy to see that  the new data set 

E(t) should be  set to zero for the initial MAX[2L1,2L2] seconds. This is because some of 

the  data from y1 and y2 entering  into &(t) "do not yet exist" during  this  time interval. Since 

the typical  round trip light time for proposed space-based laser interferometer  detectors of 

gravitational waves  will  never be greater  than  about 33 seconds [3], we conclude that  the 

amount of data lost in the implementation of our method is negligible. 

The unequal-arm interferometer response, E(t), derived in  equation (3.5), can be rewrit- 

ten explicitly, in  terms of the gravitational wave functions *I,  \k2, as follows 

Equation (3.6) shows that  the gravitational wave signal enters  into  the response of an 

unequal-arm interferometer at eight distinct times. In analogy with the terminology used 

for the Doppler tracking response to a  gravitational wave pulse [2], we will refer to equation 

(3.6) as the eight-pufse response function. 
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It is important  to point out  that, as a consequence of the  analytic form of the unequal- 

arm  interferometer response given  by equation (3.5), both  the signal and  the secondary noise 

sources will  show a  modulation of their power spectra. If  we take  the Fourier transform of 

equation (3.5), it is easy to derive the following expression for the one-sided power spectral 

density of E ( t )  

where the symbol * denotes complex conjugation, the two random processes 721,122 have been 

assumed to  be uncorrelated, and Snl ( f ) ,  S n z ( f )  are  their respective one-sided power spectral 

densities. Since the proposed space-based interferometer detectors will have armlengths that 

will  differ  by up  to a few percent [3], in the frequency band of interest  equation (3.7) can be 

further simplified  by neglecting terms of the order f ( L 2  - L1) and higher 

Equation (3.8) shows that  the one-sided  power spectral densities of the signal and  the noise 

display the same  modulation in the Fourier domain.  This  result implies that  the signal-to- 

noise ratio in an  interferometer  with  arms that  are different by  a few percent is in principle 

equal to  the signal-to-noise ratio achievable with an  equal-arm  detector [5]. 

We have simulated the procedure (equation 3.5) using realistic laser and shot noise spec- 

tra [3], known arm lengths (differing by about 3 percent),  and a  simulated monochromatic 

gravitational wave incident normal to  the plane of the interferometer. The results of the sim- 

ulation are shown in Figure 3. Plotted  are  spectral densities of the raw laser noise, the raw 

shot noise, and the canceled time series, E ( t )  (equation 3.5). This  illustrates cancellation of 

the laser noise and  modulation of the residual secondary noises in excellent agreement with 

equation (3.7). 

By further  expanding  equation (3.8) in the long  wavelength limit (27rfLl << 1 i.e. f << 
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lo-' Hz for a five million kilometers arm  length),  and taking  into account the expressions 

for hl,  h2 given  by equations (3.2,  3.3,  2.3), we obtain  the following expression for the 

low-frequency response of the interferometer 

which  is the response of an  equal-arm, one-bounce, Michelson interferometer  detector of 

gravitational  radiation multiplied by the factor l 6 ( 2 ~ f L ~ ) ~  [5,7,9]. For f 2 Hz, most 

of the  band  to which LISA will be sensitive [3], the 8-pulse structure will be visible. 

The real  limitations on the procedure described above, however, come  from the remaining 

noise sources affecting the two Doppler data,  and  the accuracy in  the  determination of the 

distances between the two pairs of spacecraft. We will estimate below  how these  errors affect 

the tolerance of.the  method.  In what follows we will assume the two secondary noise random 

processes nl(t), nz(t) to be uncorrelated, and  the two armlengths L1, L2 to  be constant. The 

following analysis will identify the  time scale during which the  latter assumption is correct. 

The derivation of our  method for synthesizing an unequal-ar'm interferometer relied  on 

the assumption of knowing the two armlengths L1, L2 exactly. If we assume  instead  that  the 

two armlengths  are known within the accuracies SLl, 6L2 respectively, the cancellation of 

the laser frequency fluctuations from the  data E(t) is no longer exact. In order to  estimate 

the  magnitude of the laser fluctuations  remaining in the  data  set E ( t ) ,  let us define & ,  1?2, to 

be  the  estimated  armlengths of the interferometer.  They  are  related to  the true armlengths 

L1, Lz,  and  the accuracies 6L1, SL2, through the following expressions 

(3.10) 

If  we  now substitute equation (3.10) into  equations (3.4,  3.5), and  expand  equation (3.5) to 

first order in SL1, 6L2, we find the following approximate expression for E(t) 
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Oui technique for synthesizing an unequal-arm interferometer can  be considered effective if 

the  magnitude of the remaining fluctuations from the laser are smaller than  the fluctuations 

due to  the  other noise sources entering in E(t). This  requirement implies an upper  limit 

in  the accuracies of the measured armlengths. In order to  estimate  the  magnitude of the 

required accuracies 6L1, SL2, let us focus our attention  on  the two terms entering  into 

equation (3.11), associated with the frequency fluctuations C ( t )  and  the noise sources nl, 

n2 

AC(t) 2 [C( t  - 2L1 - 2L2) (6L1 - 6L2) + C(t  - 2L2) (6L2) - C(t  - 2L1) (SLl)] , (3.12) 

N ( t )  E nl(t  - 2L2) - nl(t) - n2(t - 2L1) + n2(t) . (3.13) 

If we denote  with F C ( f ) ,  F ( f )  the Fourier transforms of the  random processes AC(t), N ( t )  

respectively, from  equations (3.12,  3.13) we find that they are  equal to 

Equations (3.14,  3.15) imply the following expressions for the one-sided  power spectral den- 

sities of the noises AC, N 

where we have assumed the two random processes nl, n2  to  be uncorrelated,  and  their 

one-sided  power spectral densities to be equal to S n ( f ) .  If the  characteristic wavelength of 

the gravitational  radiation is significantly longer than  the  armlengths of the interferometer 

(2nfL1,2nfL2 << l),  equations (3.16, 3.17)  can be approximated as follows 
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(3.18) 

(3.19) 

Since the unequal-arm  algorithm  presented above can  be considered effective if SAc(f)  5 

Snr(f), from equations (3.18,  3.19) we derive the following constraint  on the accuracies 6L1, 

6L2 

(3.20) 

As an  example  application of equation (3.20), let us assume 6L1 = -6L2 3 6L. It is easy 

then  to derive the following inequality for ldL( 

(3.21) 

If we specialize to Sn( f )  equal to  the  spectral density of the shot noise as given in [3], Sc(f) 

to be  the  spectral  density of a phase-stabilized diode-pumped Nd:YAG ring  laser as also 

discussed in reference [3], and  the two armlengths L1 X Lz = 5 x lo6 km,  equation can be 

rewritten  in  the following form 

(3.22) 

The  most  stringent  condition on arm-length knowledge occurs, for the expected  spectra given 

in [3], when correcting data near f = Hz down to  the secondary noise source  spectral 

density. At f = Hz, equation (3.22) implies that  the accuracy  in the  armlengths  must 

be less than  about 30 meters if we require  to reduce the frequency  fluctuations of the laser to 

the noise level identified by the photon  counting  statistics. Since, for the expected  spectra 

[3], Sn(f) increases quadratically  with  the  frequency while & ( f )  decreases as f - 2 / 3 ,  we 

conclude that  at higher frequencies the required  accuracy is  less stringent (see  equations 

(3.16,  3.17)). At f = 1 Hz, for instance, we find that  the required  accuracy grows to about 

800 meters. 

In relation to  the accuracies derived above,  it is interesting to calculate  the  time scales 

during which the  arm lengths will change by an  amount  equal to  the accuracies themselves. 
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This identifies the minimum time required  before updating  the round-trip-light-times  during 

the  implementation of the unequal-arm  algorithm. 

It  has been calculated by Folkner et  al. [12] that  the relative  longitudinal  speeds between 

the  three  pairs of spacecraft,  during  approximately  the first year of the LISA mission [3], 

can be  written in the following approximate  form 

where we have  denoted  with (a ,  b ) ,  ( a ,  c ) ,  (b ,  c )  the  three possible spacecraft  pairs, 

(3.23) 

constant velocity, and x,, is the period for the  pair ( i , j ) .  In reference [12] it  has also been 

shown that  the LISA trajectory can be selected in  such a way that two of the  three  arms’ 

rates of change are essentially  equal  during the first  year of the mission. Following reference 

[12], we will assume Vi,:) = Vi,:) # &!:I, with KT’ =. 1 m/s, 6::) = 13 m/s, T,,b = T,,, x 4 

months,  and Tb,c x 1 year. From equation (3.23) it is easy to derive the variation of each 

arm  length, for example SLl ( t ) ,  as a function of the  time t and  the  time scale S t  during 

which it takes  place 

(3.24) 

Equation (3.24) implies that a  variation in arm  length dL1 X 30 m can take place  during 

different time scales, depending on when during the mission this change  takes place. For 

instance, if t << Ta,b we find that  the  arm  length L1 changes by more  than  its accuracy (30 

meters)  after a time st = 6.7 x lo3 seconds. If however t N T,,b/4, the  arm  length will 

change by the  same  amount  after only S t  N 30 seconds instead. 

As a final note,  it is worth mentioning that, since the  anticipated  gravitational wave am- 

plitude will be  about seven or more  orders of magnitude smaller than  the  relative frequency 

fluctuations of the  laser,  the Doppler measurements  from each arm  must  be digitized  with an 

adequate resolution. This is in order to avoid the loss of the  gravitational wave signal once 

the  subtraction of the laser noise is performed. Although this is an  important point that 

will need to  be remembered in the design of the onboard data acquisition system, it does 
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not  represent a fundamental technology challenge [3]. Furthermore, in order to have perfect 

synchronization of the two data  streams  and effectively removing the laser  fluctuations, a 

common  clock should be used during the acquisition,  digitization,  and  recording of the two 

Doppler data. 

IV.  CONCLUSIONS 

We presented a time-domain  procedure for accurately cancelling laser noise fluctuations 

in  an unequal-arm one-bounce Michelson interferometer  relevant to space-borne gravita- 

tional wave detectors.  The method involves separately  measuring the phase of the returning 

light relative to  the phase of the  transmitted light  in each arm. By suitable offsetting and 

differencing of these two time series, the common laser noise is cancelled exactly  (equation 

3.5). This is temporally local and  contrasts  with  approximate  cancellation  techniques based 

on  operations on Fourier  transforms of long but  finite  durations  data  sets. 

The effect of this procedure is to introduce a characteristic  signature of a gravitational 

wave incident  on the interferometer. In the general case, the wave  is replicated  eight  times 

in the  output  time series,  depending on the  arm  lengths  and  the angle of arrival of the wave. 

We  showed that our  linear  combination precisely cancels the laser noise, and  modulates  the 

gravitational wave signal and  the secondary noise sources in the  same way if the  lengths of 

the two arms  are different by only a few percent [3]. Thus  the signal-to-noise ratio  after 

applying  our  procedure is the  same as would be  expected for an  equal-arm interferometer. 

To cancel the laser noise to  the levels of the secondary noise sources with  this  procedure, 

the  arm  lengths  must  be known with adequate accuracy. To demonstrate  practicality of the 

method, we presented a general analysis of the required  accuracy  (equations 3.16,  3.17,  3.20) 

and used the noise spectra expected for proposed space  interferometer mission to  estimate 

required  accuracy as a function of Fourier content of the signal. 

Since a  gravitational wave signal enters  into  the response of an unequal-arm interferom- 

eter in general at eight  distinct  times  (equation 3.6), the  probability of detection of signal 
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with low signal-to-noise ratios should improve. Furthermore,  such a distinct  time-structure 

should enhance the angular resolution of LISA [3] for signals where the 8-pulses are resolved. 

These issues will be addressed in a forthcoming  paper. 
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APPENDIX  A:  FREQUENCY-DOMAIN  CANCELLATION OF LASER  NOISE  IN 

UNEQUAL-ARM  INTERFEROMETERS 

In the  main  text, we gave a time-domain  procedure  for  exactly cancelling laser noise 

fluctuations in an unequal arm Michelson interferometer while preserving the gravitational 

wave (GW) signal. A procedure for cancellation of laser noise involving operations  on  the 

Fourier transforms of the  data from each arm was previously presented in [4]. This frequency- 

domain (FD)  method cancels the laser noise exactly in the  limit where the  duration of the 

data set goes to infinity. For a finite data  set, however, the  FD cancellation method is not 

exact. For the very precise cancellation  required for a gravitational wave detector  in  space 

(140 - 200 dB,  depending on Fourier frequency), the FD procedure  requires  impractically 

long data sets. In  this Appendix we briefly restate  the  FD cancellation argument, derive 

an  analytical expression for the degree of cancellation of the  FD  method as a function of 

arm lengths, duration of the  data  set,  and Fourier frequency (equation  (A24)),  compare  this 

analytical  result  with  computer  simulations,  and discuss practical  implications for space- 

borne laser interferometer GW experiments. 
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1. The frequency-domain method 

The FD method is described in detail in [4]. Briefly, the difference between the phase 

(or frequency) of the  transmitted laser signal at  time t and  the laser phase at a "two-way 

light time"  earlier is recorded separately for each arm of the interferometer.  This is done 

over some observing interval, T. Using the same  notation as in  the  main  text, these two 

time series are: 

ydt) = hl(t) + C(t - 2L1) - C( t )  + n$) , 

Y2(t> = h2(t) + C(t - 2L2) - C( t )  + n&) , 

where L1 and L2 are  the  arm lengths of the interferometer (in units of time,  c = l), hl( t ) ,  

h2( t )  are  the GW signal amplitudes, C ( t )  is the laser noise process, and nl( t ) ,  n4 t )  are all 

other noises entering the  data. C( t )  totally  dominates n1 and n2, (- lo7 or more  times 

larger in amplitude), so the objective is to cancel C( t )  to a level smaller than  the  other noise 

sources while preserving the GW signal. 

The FD approach is first to Fourier transform y1 and y2 . Conceptually  this is a true 

Fourier transform (;.e., infinite limits of integration); in practice  it is a transform over a 

finite interval  set by practical considerations. Let G ( f )  be  the sample Fourier transform of 

the series y;(t). Using the shift theorem for Fourier transforms [ll] one can use the  data  in, 

e.g., arm 2 to solve for c(f), the Fourier transform of C( t ) :  

Given this estimate of c(f) one can correct the  data in the  other  arm for laser fluctuations. 

The Fourier transform of the corrected data is then: 

The ensemble average of the square of this  quantity is the power spectrum of the FD cor- 

rected data; as shown in [4] it goes to zero (except at  the poles in equation (A4), i.e. f = 0 
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and  the  timetravel resonances of arm 2) if there is laser noise only and if the  data set is 

infinitely long. This FD approach preserves a GW signal. Equation (A4) is the essential 

result of the FD-correction  approach. 

2. Performance of the frequency  domain  approach for finite  data  sets 

In a finite-duration  experiment, the  FD cancellation is not  exact. The degree to which 

the  FD  method cancels the laser noise depends  on the  duration of the Fourier transforms 

used, how the  data  are "windowed" [lo] in the time-domain  before estimating  the Fourier 

transform, the interferometer  arm  lengths,  and  the Fourier frequency considered. 

Define K( f )  as the "forward" Fourier transform of the Doppler data yl(t)  calculated over 

the  interval T f 2r 

E ( f )  G / T  yl(t) e2*iJt dt . 
-7- 

From the Fourier  theorem, the inverse Fourier transform, yl(t), is given by 

where f c  is the Nyquist frequency cut-off.  For a space-based interferometer, for instance, f c  

might be 0.5 Hz. Note that if we substitute  equation (A6) into  equation (A5) we get 

which, after  integration with respect to  time, becomes 

sin(n( f - f ' ) T )  

Since the  function inside the squared  brackets is one of the  approximations  to  the Dirac 

delta function, we conclude that  equation (A8) becomes an  identity, in agreement  with the 

definitions of forward and backward Fourier transforms given in equations (A5,  A6). 

To minimize  spectral leakage [lo], it is necessary to pre-multiply the time-domain data 

sets by a window function, W(t ) ,  before taking Fourier transforms. If x(t) yl( t )  W ( t ) ,  
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and K ( t )  G y2(t) W(t) ,  the finite-duration windowed Fourier transform of, e. g., &(t) ,  is 

equal to 

E( f )  = K( f )  + [C(t - 2L1) - C(t)] W ( t )  e2*;jt dt + x ( f )  , (A91 
-T 

where K( f ) ,  ( f )  are  the Fourier transforms of h l ( t )  W ( t ) ,  nl(t)  W ( t )  respectively. Since 

C(t ) ,  W( t )  can be  written in terms of their inverse Fourier transforms,  after  some simple 

algebra we can  rewrite  equation (A9) as 

W )  = K(f) + J’ /” J” Qf ’ )  
“7 - f c  - f c  

If we interchange the integration symbols, and  integrate with respect to  time, equation (A10) 

becomes 

By further  integrating  equation ( A l l )  with respect to j” we obtain 

z(f) = K(f )  + J” C( f ’ )  [e4trii’L1 - 11 W (  f - f ’ )  df’ + K ( f )  . 
- f c  

If W ( t )  is the Parzen  (triangular) window [lo], its Fourier transform is 

sin(n f r )  

and we can rewrite  equation (A12) as follows 

If  we now make  the change of variable x (  f - f’)r = q,  equation (A14) becomes 
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Since the integrand in equation (A15) decays as r ] - 2 ,  the  major  contribution to  the integral 

will come from a few cycles around zero. This implies that  the integrand  in  equation (A15) 

can be  written in the following approximate form 

After some  further  algebra,  equation (A16) can be rewritten as follows 

and similarly we can  write the corresponding equation for the Fourier transform of the 

windowed Doppler data measured with arm 2. We point out  that in equation (A17) the 

second integral goes to zero as the integration time goes to infinity; however, for any finite 

time of integration  the  transfer function of the frequency fluctuations of the laser into  the 

Doppler observables will not have the ideal analytic forms 

If we implement the FD technique proposed in [4] for removing the laser noise, we get 

The last term on the right-hand-side of equation (A19) can be  rewritten as 
e 

If we take the modulus-squared and the ensemble-average ((. . .))of the left and right-and- 

sides of equation (A20), we get 
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Assuming C ( t )  is a stationary  random process with power spectral  density S c ( f ) ,  we can 

rewrite  equation (A21) as follows 

which then becomes 

where the  identity T = 27 has been'used. Since the power spectral  density of the frequency 

fluctuations of a  stabilized laser is a  smooth function of the frequency, the  major contribution 

to  the integral will come  from  a few cycles around zero. This implies that we can treat  the 

power spectral  density & ( f )  essentially as a  constant in doing this  integration,  and rewrite 

equation (A23) as 

where F(L1, L2, f )  is 
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Equation (A24) is the main result of this Appendix. For a finite-duration experiment,  it 

expresses the degree of FD cancellation of the laser noise as a function of the two arm 

lengths, the  spectrum of the laser noise, the experiment  duration,  and Fourier frequency. 

3. Simulation 

We verified this formula via simulated time series of various durations, various arm 

lengths, and various arm length differences. To make a more  direct comparison with the FD 

method in [4], these'simulations were done  in terms of phase rather  than fractional frequency 

difference. Figure 4 shows one of these simulations, the  parameters of which  closely  follow 

those used in [4]. We simulated white laser phase noise with two-sided spectral  density S4(f)  

= 2.5 x lo7 rad2/Hz (;.e, r.m.s. phase of 5000 radians in a 1 Hz band),  and white  "other" 

noise (independent in each arm  and with spectral  density much smaller than  the laser noise 

[4]). From the simulated  time series of laser noise we formed the  time series of laser phase 

noise  differences, p ( t  - 2Li) - p ( t ) ,  for each arm. A simulated sinusoidal gravitational wave 

signal was injected at f o  = 0.1 Hz, with amplitude ho = The  gravitational wave was 

assumed incident normally onto the plane of the interferometer so that  the phase data in 

each arm has two "pulses" separated by the two-way light travel time  in  that  arm [2]. As 

in [4] the signal was added to one arm  and  subtracted from the  other.  The two-way light 

times used  were 2L1 = 16.6875  sec and 2L2 = 16.71875  sec (i.e, they differed  by 1/32 of a 

second) and were assumed to  be known exactly. Thus  the observable time series of the two 

arms were: 

where 
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The minus sign on the right-hand-side of the equation for s2 reflects the quadrupolar nature 

of the  gravitational wave signal [7], the optical  carrier frequency (vo = 3 x 1014 Hz) is 

appropriate for a 1 micron laser [3], and  the frequency fluctuation y(t)  = Av/vo has been 

integrated to get the associated phase fluctuation ~ ( t ) .  The "other"  phase noises, XI, X2 in 

equations (A26) and (A27) were taken to be white  phase noise, independent in each arm, 

and  with  spectral  density 14 orders of magnitude  smaller  than  that of the laser phase noise 

[4]. (The crucial difference between our simulation and  that done  in [4] is that  the laser 

phase noise time series, p ( t ) ,  was required in [4] to be periodic with the  same period as 

that of the  finite Fourier transform.  This periodicity condition-which would not  be satisfied 

in  a real observation-forces the phase difference series in each arm, p ( t  - 2Li)  - p ( t ) ,  to 

have the idealized analytic form of equation (A18), even for a finite duration  rectangular 

windowed Fourier transform.  Thus the simulation in [4] erroneously appeared to achieve 

exact laser-noise cancellation even for a finite duration  data  set.) 

A simulated  duration of T = 2'' seconds was used to  compute Fourier transforms. 

All time series were multiplied by a triangle window function prior to being discreteFourier 

transformed.  Figure 4 shows spectra averaged over 30 realizations of the simulated processes 

(to reduce estimation  error). Shown in the figure are  the raw laser noise spectrum, and the 

spectrum of the FD-cancelled noise  process. The noise  level of the "other" noise  processes 

(140 dB below the laser phase noise)  is indicated as a dashed line. The  spectrum of the 

monochromatic signal with ho = passed through the interferometer response and  with 

frequency resolution appropriate for T = 215 seconds, is  also indicated.  Our  analytical result 

(equation A24) is over plotted as a dot-dashed line on the FD-canceled spectrum  (although 

the model curve is  difficult to see because of the excellent agreement.) For these  parameters, 

the FD method fails to cancel the laser noise to desired levels  over essentially all of the band. 
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4. Implications for space-borne  gravitational  wave  interferometers 

FD-cancellation presents conflicting requirements: the  data  duration, T ,  must  be long 

enough to get 140 - 200 dB suppression of the laser noise (depending  on Fourier frequency), 

but simultaneously (at least in the FD approach as formulated to  date) short enough so 

that  the  arm lengths  are sensibly constant. Using as an example the published parameters 

of the proposed LISA mission [3], the arms can be  up to 3 percent different and  the peak 

rate-of-change of an  arm will be  about 13 m/sec. Taking the arm lengths to be 1 percent 

different with 2L1 = 33 sec and 2L2 = 33.3 sec and requiring at least 140 dB suppression in 

the Fourier band - Hz, requires (equation A24) a data duration, T X 6 months. 

On this  time scale the  arms will change by much more  than  the tolerance derived for the 

FD  method [4] and in the main  text of this  paper.  Restricting the  time  duration of the 

FD  method  to a value where the  arm lengths do  not change significantly [12,13] results  in 

insufficient suppression of the laser noise. 
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FIGURES 

FIG. 1. Typical  configuration  of a space-based,  unequal-arm  interferometer detector of gravita- 

tional waves. The  corner  spacecraft a transmits  coherent laser light to  the  other spacecraft, b and 

c. They coherently retransmit back to spacecraft a,  where coherent two-way phase (or frequency) 

changes in each arm  are  then measured. The two  armlengths  are  denoted with L1, and L2. 

FIG. 2. Coherent  laser  light  is  transmitted  simultaneously  from  spacecraft a to spacecraft b and 

c, and  coherently transponded back to a. The X axis is along the bisector of the angle enclosed 

between the two arms of the interferometer. The Y axis is orthogonal to  the X axis in the plane 

of the interferometer,  and  the 2 axis is chosen in such a way to form  together with ( X , Y )  a 

right-handed set of axes. The  gravitational wave train  propagates along the direction, while the 

unit  vectors p i ,  $2 are along the direction of propagation of the  two laser beams  from  spacecraft a 

to  spacecraft b and c respectively. See text for a complete  description. 

FIG. 3. Simulation of the time-domain  laser noise cancellation  procedure  for  unequal-arm 

interferometers  described in the  text.  Fractional frequency fluctuation  spectra, S,(f) ,  are 

plotted' versus Fourier frequency for: (upper  curve) raw laser noise having spectral den- 

sity 10-28(f / lH~)-2/3 + 6.3 x 10-37(f/lHz)-3.4H~-1, and (lower curve)  residual noise after 

time-domain  cancellation  procedure.  Dashed  curve  shows the level of shot noise added to each 

arm  (spectral  density 5.3 x 10-38(f/lHz)2 Hz-', independent in each arm)  and  dot-dashed curve 

showing the predicted  modulation of the  shot noise spectrum  due to  our laser noise cancellation is 

also plotted.  Other  parameters were 2L1 = 32 sec, 2L2 = 31 sec, and  transform  length 215 sec. In 

addition to  shot noise, a simulated sinusoidal gravitational wave with amplitude ho = and 

fo = 0.1 Hz incident  normal to  the plane of the interferometer was added. The time-domain pro- 

cedure, using the known arm  lengths,  cancels the laser noise exactly  making the simulated  signal 

clearly visible above the (now modulated)  shot noise spectrum. 
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FIG. 4. Phase  spectra of simulated laser noise illustrating the performance of the fre- 

quency-domain  cancellation  procedure  for unequal arm  interferometers, as discussed in the A p  

pendix. Upper  curve: spectrum of raw  laser  phase noise (assumed  white  with spectral level 

2.5 x lo7 rad2/Hz). Lower curve: spectrum of frequency-domain cancelled noise for parameters 

2L1 = 16.6875 sec, 2Lz = 16.71875 sec, duration of data = 215 sec. Thirty realizations of each 

spectrum were averaged to reduce estimation  error  and  more clearly illustrate  spectral  shapes. Also 

plotted as a dot-dashed line is the model prediction  (equation A24). Dashed line: spectral density 

of white  "shot" noise added to each arm.  Spectral line is  FD-cancellation  response of interferom- 

eter  to  gravitational wave incident  normal to  the plane of the interferometer  with fo = 0.1 Hz. 

For  these  arm  lengths,  the FD-cancellation  method would require  long transform  lengths  (about 6 

months) to suppress  the laser noise by 140 dB in the band - Hz. 
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